The $\mathrm{O}(\mathrm{N})$ nonlinear sigma -model with prescribed boundary values in a belt

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1991 J. Phys. A: Math. Gen. 24 L821
(http://iopscience.iop.org/0305-4470/24/15/006)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 11:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

The $\mathbf{O}(N)$ nonlinear σ-model with prescribed boundary values

in a belt

Thomas Herb
Fakultät für Mathematik und Physik, Universität Bayreuth, Postfach 101251, W-8580 Bayreuth, Federal Republic of Germany
and
VUMA~Institute for Vedic Science and Technology, Aurkiel 6, W-8371 Böbrach, Federal Republic of Germany

Received 23 May 1991

Abstract

We consider the Euclidean d-dimensional $O(N)$ nonlinear σ-model in a bounded domain, with prescribed boundary values. A new parametrization of the N-sphere allows to prove existence and classical differentiability of minimizing solutions under a relaxed smallness condition for the boundary values.

In a bounded domain of $\mathbb{R}^{d}(d \geqslant 3)$ with smooth boundary, which for simplicity we take to be the unit ball $B=\left\{x=\left(x^{1}, x^{2}, \ldots, x^{d}\right):|x| \leqslant 1\right\}$, we consider the Lagrangian

$$
\begin{equation*}
L(n)=|\nabla n|^{2} \tag{1}
\end{equation*}
$$

where $n \in \mathbb{R}^{N}$ satisfies the constraint

$$
\begin{equation*}
|n|=1 \tag{2}
\end{equation*}
$$

On the boundary ∂B of B we prescribe

$$
\begin{equation*}
n=\Phi \tag{3}
\end{equation*}
$$

with a given function Φ on ∂B satisfying

$$
|\Phi|=1 .
$$

Without loss of generality we can assume Φ to be extended on the whole of B.
Now we are interested in finding a minimizing solution, i.e. a minimizing point of the Lagrangian (1) under the constraints (2) and (3). This, so far, has only been possible for boundary values Φ lying in a half-sphere (cf [1]). Here, we use a new parametrization [2] of the N-sphere $\left\{\left(n^{0}, n^{1}, \ldots, n^{N}\right) \in \mathbb{R}^{N+1}: \sum_{k=0}^{N}\left(n^{k}\right)^{2}=1\right\}$, which allows us to find solutions for boundary values in a belt of $\pm 45^{\circ}$ around an equator.

So, let us introduce the coordinates $u^{0}, u:=\left(u^{1}, \ldots, u^{N-1}\right)$, which come from projecting the half-equator $\left\{n:|n|=1, n^{0}=0, n^{N}>0\right\}$ from the centre to the tangent hyperplane at the point $(0, \ldots, 0,1)$ and rotating the rest of the sphere around the
($n^{\prime}, \ldots, n^{N-1}$) 'axis' into this equator. The angle of rotation is our zeroth coordinate:

$$
\begin{align*}
& u^{i}=\frac{n^{i}}{\sqrt{\left(n^{p}\right)^{2}+\left(n^{N}\right)^{2}}} \\
& u^{0}= \begin{cases}n^{0} /\left|n^{0}\right| \cos ^{-1} n^{N} / \sqrt{\left(\left(n^{0}\right)^{2}+\left(n^{N}\right)^{2}\right)} & n^{0} \neq 0 \\
0 & n^{0}=0, n^{N}>0 \\
\pi & n^{0}=0, n^{N}<0\end{cases} \tag{4}\\
& n^{i}=\frac{u^{i}}{\sqrt{1+|u|^{2}}} \quad n^{0}=\frac{1}{\sqrt{\left(1+|u|^{2}\right)}} \sin \left(u^{0}\right) \\
& n^{N}=\frac{1}{\sqrt{\left(1+|u|^{2}\right)}} \cos \left(u^{0}\right) \quad i=1,2, \ldots, N-1 .
\end{align*}
$$

By this prescription, we can cover the whole sphere except for $\left\{n:|n|=1, n^{0}=n^{N}=0\right\}$, with the parameter domain $(-\pi, \pi] \times \mathbb{R}^{N-1}$ and a discontinuity at $\left\{n:|n|=1, n^{0}=0\right.$, $\left.n^{N}<0\right\}$. This discontinuity we can avoid by extending the parametrization to a covering mapping, especially when treating the boundary value problem, for which we only need a finite number $K<\infty$ of sheets of the covering, depending on the prescribed boundary values. In this case, the parameter domain is $(-K \pi, K \pi) \times \mathbb{R}^{N-1}$.

With this parametrization, the metric tensor looks as follows:

$$
\begin{align*}
& g_{i j}=\frac{1}{\left(1+|u|^{2}\right)^{2}}\left(\left(1+|u|^{2}\right) \delta_{i j}-u_{i} u_{j}\right) \\
& g_{0 i}=g_{i 0}=0 \\
& g_{00}=\frac{1}{1+|u|^{2}} \\
& g^{i j}=\left(1+|u|^{2}\right)\left(\delta^{i j}+u^{i} u^{j}\right) \tag{5}\\
& g^{i 0}=g^{0 i}=0 \\
& g^{00}=1+|u|^{2} .
\end{align*}
$$

We also give the Christoffel symbols of this parametrization for the convenience of the reader:

$$
\begin{aligned}
& \left(\begin{array}{cc}
i & \\
k & l
\end{array}\right)=\frac{-1}{1+|u|^{2}}\left(u_{l} \delta_{k}^{i}+u_{k} \delta_{l}^{i}\right) \\
& \left(\begin{array}{cc}
0 & \\
k & l
\end{array}\right)=\left(\begin{array}{cc}
i \\
0 & l
\end{array}\right)=\left(\begin{array}{cc}
0 \\
0 & 0
\end{array}\right)=0 \\
& \left(\begin{array}{cc}
0 \\
0 & l
\end{array}\right)=-\frac{u_{l}}{1+|u|^{2}} \\
& \left(\begin{array}{ll}
i & \\
0 & 0
\end{array}\right)=x^{i} .
\end{aligned}
$$

In these coordinates, our Lagrangian (1) reads

$$
\begin{align*}
L & =\frac{1}{2}\left(g_{j i} u_{, \alpha}^{i} u_{, \beta}^{j}+2 g_{0 i} u_{, \alpha}^{0} u_{, \beta}^{i}+g_{00} u_{\alpha_{\alpha}}^{0} u_{, \beta}^{0}\right) \delta^{\alpha \beta} \\
& =\frac{1}{2} \frac{1}{1+|u|^{2}}\left(u_{, \alpha} \cdot u_{, \beta}+u_{, \alpha}^{0} u_{, \beta}^{0}-\frac{1}{1+|u|^{2}}\left(u \cdot u_{, \alpha}\right)\left(u \cdot u_{\beta \beta}\right)\right) \delta^{\alpha \beta} \tag{6}
\end{align*}
$$

where we are using the Einstein summation convention with Greek indices running from 1 to d and Latin ones from 1 to $N-1$. Subscripts with commas, incidentally, stand for covariant derivatives.

The constraint (2) need no longer be mentioned; it is implicit in our parametrization, and (3) gets transformed into

$$
\begin{equation*}
u=\phi \tag{7}
\end{equation*}
$$

where ϕ is the coordinate representation of Φ according to (4).
With this special form, we can now easily apply the standard calculus of variations [3] to find a weak minimizing point for L, i.e. a bounded function ($u^{0}(x), u(x)$) which along with its first distributional derivatives is square-integrable, which assumes the boundary values ϕ in a weak sense, and which solves

$$
\int_{B} L\left(u^{0}, u\right) \mathrm{d}^{d} x \rightarrow \min
$$

One can even show that this solution does not sit on the boundary of the class of admissible variations, such that it (weakly) solves the associated Euler-Lagrange equations:

$$
\begin{align*}
& \Delta u^{i}-\frac{2}{1+|u|^{2}}\left(u \cdot u_{, \alpha}\right) u_{, \beta}^{i} \delta^{\alpha \beta}+u_{, \alpha}^{0} u_{, \beta}^{0} \delta^{\alpha \beta} u^{i}=0 \tag{8}\\
& \Delta u^{0}-\frac{2}{1+|u|^{2}}\left(u \cdot u_{, \alpha}\right) u_{\beta}^{0} \delta^{\alpha \beta}=0
\end{align*}
$$

or in divergence form:

$$
\begin{align*}
& \partial_{\alpha}\left(\frac{1}{1+|u|^{2}} u_{, \beta}^{i} \delta^{\alpha \beta}\right)+\frac{1}{1+|u|^{2}} u_{, \alpha}^{0} u_{, \beta}^{0} \delta^{\alpha \beta} u^{i}=0 \tag{9}\\
& \partial_{\alpha}\left(\frac{1}{1+|u|^{2}} u_{, \beta}^{0} \delta^{\alpha \beta}\right)=0 \quad(i=1, \ldots, N-1)
\end{align*}
$$

For this argument one usually needed a size restriction for the coordinates. Here, we only need $|\bar{u}|<1, u^{0}$ being absolutely free. This point is explained in more detail in [4].

To the system (9) of elliptic partial differential equations, we apply methods of [5] to show that the solutions actually are continuous and a method of [6] to derive differentiability. The detailed arguments are also to be found in [4].

In this way we get the final result.
Theorem. Let \mathscr{B} be a belt around an equator of the N-sphere and let $\Phi: \bar{B} \rightarrow \mathscr{B}$ be a smooth function whose restriction to ∂B can be continuously contracted to a point in \mathscr{B}. Then there is a smooth minimizing point $n: \bar{B} \rightarrow \mathscr{B}$ of the Lagrangian (1) with $n=\Phi$ on ∂B.

References

[1] Hildebrandt S 1984 Harmonic Mappings and Minimal Immersions, Montecatini 1984 Lecture Notes in Mathematics (Berlin: Springer)
[2] Herb T 1991 New A-Priori Estimates for Surfaces in Three-dimensional Riemannian Spaces of Constant Positive Curvature in press
[3] Morrey C B 1966 Multiple Integrals in the Calculus of Variations (New York: Springer)
[4] Herb T 1991 Harmonic Mappings on the Dark Side of the Moon in press
[5] Wiegner M 1977 Das Existenz- und Regularitätsproblem bei Systemen nichtlinearer elliptischer Differentialgleichungen Habilitationsschrift zur Erlangung der Venia Legendi der Fakultät für Mathematik der Ruhruniversität Bochum, 1977
[6] Frehse J 1981 Mathematical Techniques of Optimization, Control, and Decision (Annals of the CEREMADE) ed J P Aubin et al (Boston: Birkhäuser)

